Le titre de l’article est, paraît-il, l’inscription que Platon avait fait écrire à la porte d’entrée de son école de philosophie. C’est une légende, mais comme toutes les légendes, elle est belle et nous dit quelque chose. L’École d’Athènes fresque de Raphaël, Palais du Vatican, v. 1509-1510 Elle m’évoque la phrase de Sophia Kovalevskaya que j’ai mis en exergue de mon site, il est impossible d’être mathématicien sans être poète dans l’âme ». Sophia Kovalevskaya 1850-1891 Ces deux phrases posent le lien entre les mathématiques et la beauté, les mathématiques et la vérité, les mathématiques et la sagesse, la sagesse au sens philosophique. On se trompe à mon sens dans l’enseignement des mathématiques à l’école. On parle toujours de l’utilité des mathématiques, et certes, elles le sont, mais rares sont les élèves touchés par cet argument. Les mathématiques ne leur servent à rien dans l’immédiat, à part peut-être à contenter leurs parents et leurs professeurs, et à recevoir les honneurs du système scolaire. Je vous renvoie à un de mes anciens articles sur l’utilité des mathématiques. On gagnerait à parler de la beauté des mathématiques, et de la valeur des mathématiques, valeur avec un grand V, comme Vérité. Beauté mathématique. Les pavages du palais de l’Alhambra à Grenade. Que nous apprennent les mathématiques? Les mathématiques nous apprennent que le chemin est plus intéressant que le point d’arrivée, elles nous apprennent qu’on peut découvrir la vérité à l’aide du raisonnement, elles nous apprennent qu’il ne faut pas croire aveuglément ce qu’on nous dit, que la vérité peut être démontrée, et qu’elles est accessible à tous, pour peu qu’on en ai envie. Les mathématiques nous ouvrent les portes de mondes enchantés, dans les quels les droites parallèles peuvent se couper, les nombres peuvent être premiers, jumeaux, parfaits. Dans les quels la quatrième dimension est naturelle. Et maintenant, avec la puissance des ordinateurs, on peut voir les mathématiques! Les mathématiques sont belles et elles peuvent nous toucher, à l’instar d’un tableau ou d’un poème. Les mathématiques sont humaines et reflètent les préoccupations humaines, le désir de l’homme de s’élever et de tutoyer l’infini. Ceux qui aiment les mathématiques ne se préoccupent pas de savoir qu’elles servent à faire des avions ou des téléphones portables. Ils ne se préoccupent nécessairement de la valeur des solutions des équations, mais bien davantage à la méthode pour trouver une solution. Quand ils ont compris le concept, quand ils ont trouvé la méthode, ils laissent à d’autres le soin de finir les calculs. Comme pour le bonheur, le chemin est le plus important. Les mathématiques, tout comme l’art, ou le sport, aident à vivre, car la vie n’est pas faite que d’utilité, c’est une affaire de développement. Mieux comprendre, mieux réfléchir, mieux se connaître, se dépasser… Je suis tombée l’autre jour sur ce petit billet de Thibaut de Saint-Maurice sur France Inter, qui m’a inspiré ces réflexions. Il y parle, avec efficacité et lyrisme, de la valeur des mathématiques, en ce qu’elles rendent possible à chacun de nous de toucher l’universel. Les mathématiques nous apprennent l’importance du raisonnement en effet, on s’en fout de la valeur de x », et nous rendent plus sages en nous faisant prendre conscience que nous sommes capables de connaître une vérité universelle, et ce grâce à notre seul raisonnement. Une belle image de mathématiques, trouvée sur le site Images des maths.
Que nul n'entre ici s'il n'est géomètre", aurait-il même fait inscrire au seuil de l'Académie, à Athènes. Force est de constater qu'il y a, à la fois dans la science géométrique et dans ce qu'elle permet de comprendre selon Platon, le coeur de la démarche scientifique de Bernard Durand. Ses recherches dans la législation et la doctrine, tant française qu'européenne, confrontées
4 Que nul n’entre ici s’il n’est géomètre que signifie cette célèbre phrase de Platon ? Comment l’interpréter ? Tentative d’explication. Que nul n’entre ici s’il n’est géomètre » est la célèbre inscription que Platon aurait fait graver à l’entrée de l’Académie, son école d’Athènes. Platon 428-348 av. J-C est un idéaliste. Dans l’Allégorie de la caverne, il invite chacun à faire la différence entre le monde du sensible tout ce qui est perceptible par les sens, source d’erreur et d’illusion,et le monde des idées pures régi par la raison, c’est le monde du vrai, du beau, du bien et du juste. Or, on peut assimiler le monde des idées pures et raisonnables à la géométrie. En effet, raison est synonyme de construction logique, mathématique, démontrable, à l’image des théorèmes de géométrie. Que nul n’entre ici s’il n’est géomètre » constitue donc un rappel à l’ordre Platon n’accepte dans son école que ceux qui font preuve de discernement, c’est-à-dire ceux qui savent manier les objets de la pensée sans passion, sans affect, sans préjugé. Entrons plus en détails dans la signification de cette célèbre phrase de Platon. Lire aussi nos articles sur la géométrie et sur le mécanisme de nos perceptions. A l’origine, la géométrie du grec geômetrês mesure de la terre est la science de la mesure des terrains. Le terme peut aujourd’hui être défini comme la science de l’espace ». A noter que Pythagore, Thalès et Euclide sont les principaux fondateurs de la géométrie. La géométrie se fonde sur un raisonnement abstrait. Il s’agit de manipuler des objets imaginaires dont les caractéristiques sont parfaites. La représentation graphique de ces objets n’est quant à elle jamais parfaite, elle permet simplement de se représenter schématiquement ou symboliquement les objets étudiés. La géométrie peut aussi avoir des applications concrètes, par exemple à travers l’architecture. La géométrie constitue donc un certain rapport à la matière elle ne la nie pas mais l’idéalise. Elle est aussi une invitation à voir la perfection cachée dans la matière ; elle est l’interface entre la matière et le divin. La philosophie présente de nombreuses similitudes avec la géométrie comme cette dernière, elle utilise des outils, se fixe des règles, s’appuie sur des méthodes pour arriver à la connaissance ou à la démonstration d’une vérité. Par exemple, la philosophie étudie des objets mentaux qui peuvent faire penser à des figures géométriques. Comme le géomètre, le philosophe utilise la mesure, la comparaison, le modèle, la ressemblance, la vérification ou l’analogie. Perceptions vs. géométrie. Nos perceptions sensibles sont très éloignées de la géométrie. Alors que l’espace géométrique est continu, infini et homogène, nos perceptions déforment sans cesse le réel. Par sa formule que nul n’entre ici s’il n’est géomètre », Platon nous encourage à dépasser le stade des sensations pour accéder à l’intelligible pur. Il nous incite à passer du partiel à l’universel, du relatif à l’absolu, et donc de l’erreur à la vérité. Une vérité qui ne dépend pas de nous, mais qui doit s’imposer à tout être sensé. Raisonner en géomètre, c’est donc renoncer à la part illusionnée de nous-mêmes, celle qui nous fait aborder le monde par les fausses évidences, l’ego, les habitudes, les impressions, les stéréotypes, les préjugés, les affects ou les passions. C’est laisser son individualité le moi » partiel à la porte de l’
QueNul N'entre Ici S'il N'est Géomètre - Recueil D'études En Droit Pénal De Bernard Durand pas cher En utilisant Rakuten, vous acceptez l'utilisation des cookies permettant de vous proposer des contenus personnalisés et de réaliser des statistiques.
Quenul n'entre ici s'il n'est géomètre : Recueil d'études en droit pénal de Bernard Durand sur ISBN 10 : 2910114287 - ISBN 13 : 9782910114282 - Centre d'histoire judiciaire - 2011 - Couverture souple
Que nul n’entre ici s’il n’est géomètre » : la préparation des textes de loi et de décret est en passe d’être réapproprié par les hauts fonctionnaires, d’autant plus
gCTaUKp. w9v1dwohtd.pages.dev/303w9v1dwohtd.pages.dev/96w9v1dwohtd.pages.dev/223w9v1dwohtd.pages.dev/47w9v1dwohtd.pages.dev/910w9v1dwohtd.pages.dev/524w9v1dwohtd.pages.dev/525w9v1dwohtd.pages.dev/962w9v1dwohtd.pages.dev/242
que nul n entre ici s il n est geometre